
Tetrahedron Letters 50 (2009) 6347–6350
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
Unexpected behaviour of monospirothiacalix[4]arene under acidic conditions

Kateřina Polívková a, Markéta Šimánová a, Jan Budka a, Petra Cuřínová b, Ivana Císařová c, Pavel Lhoták a,*
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Treatment of the monospirodienone derivative of thiacalix[4]arene with various acidic agents (HCl and
HBr) results in rearrangement of the thiacalixarene skeleton leading to the formation of a phenoxanthiin
derivative in high yields (up to 80%). The structure of the unexpected product is confirmed using 1H and
13C NMR spectroscopy, and X-ray crystallography.
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Figure 1. Mono- and bis(spirodienone) derivatives of calix[4]arene.
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Calix[n]arenes are macrocyclic compounds frequently used in
supramolecular chemistry as building blocks for the design and
construction of various ligands and receptors. The popularity of
these compounds stems, among others, from their simple prepara-
tion and easy derivatisation allowing the regioselective introduc-
tion of many functional groups into the basic macrocyclic
skeleton.1

Chemical modifications of calix[4]arenes are usually based on
lower rim (OH groups) alkylation/acylation leading to molecules
with defined 3D-shapes (conformers), or on electrophilic substitu-
tion of the upper rim (aromatic part).1 A rather unusual method for
the substitution of the calixarene skeleton was reported in 1992
when the so-called spirodienone derivatives were described for
the first time (Fig. 1).2 These compounds, prepared by oxidation
of the starting calixarenes, can serve as useful intermediates in
the regioselective functionalisation of basic calixarene scaffolds3

enabling the synthesis of otherwise inaccessible analogues. Thus,
selective derivatisation of methylene bridges,4 replacement of hy-
droxy groups by alkyl groups,5 and introduction of meta-substitu-
ents on the upper rim6 are examples.

Despite systematic research on thiacalix[4]arene7 derivatisa-
tion, information on the chemistry of these compounds remains
rather incomplete.8 Potential applications of thiacalixarenes can
be envisaged, however, the lack of general derivatisation methods
still obstructs their utilisation in supramolecular chemistry. In or-
der to develop novel alternative procedures for upper-rim modifi-
cation in thiacalixarenes, we have applied the spirodienone route
to thiacalix[4]arene 1. In this Letter we report the unexpected re-
sults of our synthetic efforts which show that the behaviour of
the thiacalix[4]arene system is substantially altered when com-
pared with that of classical calix[4]arenes (see Scheme 1).
ll rights reserved.
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Scheme 1. Application of the spirodienone route in thiacalixarenes.
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Scheme 2. Reaction of the spirodienone with HCl (classical calixarene).

Table 1
The formation of 4 under various reaction conditions

Acid Conditions Yield

Concd aq HCl MeCN, reflux, 1.5 h 76
Concd aq HBr MeCN, reflux, 1.5 h 82
Gaseous HCl MeCN, reflux, 1.5 h 80
Gaseous HCl MeOH, reflux, 1.5 h 30a

TFA Toluene, MeOH, 80 �C/2 d 10b

p-TSA Toluene, MeOH, 110 �C/2 d 11b

a Unreacted starting compound 2 (62%) isolated.
b Heated until complete disappearance of starting compound 2.
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The preparation of monospirodienone thiacalix[4]arene 2 was
accomplished according to a known procedure.9 The reaction of
thiacalixarene 1 with chloramine-T in CHCl3–MeOH mixture at
0 �C gave the corresponding spiro compound 2 in 60% yield. It is
known that the analogous derivative of classical calix[4]arene
reacts with HCl to yield a 5-chloro-substituted derivative. The
reaction pathway is depicted in Scheme 2 and involves protonation
of the spirodienone moiety followed by ipso-substitution of the
tert-butyl group. The resulting chloro-substituted calix[4]arene
was isolated in 60% yield.10

Reaction of spiro derivative 2 with concd aq HCl in acetonitrile
at reflux smoothly gave one new compound which was easily iso-
lated by crystallisation.11 Surprisingly, this compound did not con-
tain a chlorine atom (according to MS) and the 1H NMR spectrum
in CDCl3 showed the presence of four inequivalent tert-butyl
groups (1.43, 1.32, 1.16 and 1.15 ppm). On the other hand, the
presence of only seven signals in the aromatic region of the spec-
trum (3 � 2 doublets with typical meta coupling � 2.3–2.6 Hz and
one singlet at 7.38 ppm) indicated a meta-substitution pattern on
one of the aromatic rings (Fig. 2). As the nature of the substituent
remained unclear, a similar reaction of 2 with aq HBr was carried
out, again yielding an identical product. To eliminate the possible
addition of water we also carried out the reaction with gaseous
HCl under strictly anhydrous conditions. Not surprisingly, the
same product was again isolated (see Table 1). The MS in all cases
showed a molecular peak at m/z = 717 corresponding with the
mass of the starting compound 2, while IR analysis revealed the ab-
sence of a carbonyl group. Consequently, a logical explanation
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Figure
should imply rearrangement of the starting dienone skeleton, such
as in compound 4 which corresponds to all the structural features
observed by spectroscopic methods. This type of reaction has never
been observed with classical calixarenes12 indicating substantial
differences in the reactivity of both systems. A suggested mecha-
nism is depicted in Scheme 3 and involves protonation of the car-
bonyl group followed by opening of the spiro-moiety. While in the
classical calixarene series it is always the C–O bond which is
cleaved, in the case of thiacalixarene the C–S bond seems to be
the weakest point of the spiro-fragment. Sulfur can then attack
the neighbouring position on the aromatic ring to form a more sta-
ble six-membered phenoxanthiin ring.

Unequivocal proof of the structure of compound 4 was obtained
from single crystal X-ray diffraction analysis (suitable monocrys-
tals were grown by slow evaporation of a CH2Cl2 solution).13
2.



Figure 3. X-ray structure of 4 showing an array of intramolecular hydrogen bonds,
the But groups and the remaining hydrogens are omitted for clarity.
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Scheme 3. Suggested mechanism for phenoxanthiin formation from 2.
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Compound 4 adopts the cone conformation which is supported by
an intramolecular circular array of hydrogen bonds between the
three OH groups on the lower rim. The interatomic O���O distances
Figure 4. A view of derivative 4 showing the CH2Cl2 molecule within the cavity.
Hydrogens and second positions of disordered atoms are omitted for clarity.
Displacement ellipsoids are drawn at 50% probability level.
(O1–O3 2.8569 (18), O2–O1 2.8935 (18) and O3–O2 2.7548 (18) Å)
correspond well with hydrogen bonds of moderate strength.14 This
bonding motif is further strengthened by hydrogen bonding inter-
actions between the bridging sulfur atoms and the hydrogens from
the adjacent OH groups (S���H 2.52–2.57 Å; Fig. 3).

Compound 4 crystallises with two molecules of dichlorometh-
ane (crystallisation solvent). While one solvent molecule resides
outside the cavity within the free space of the unit cell, the other
solvent molecule is situated directly inside the thiacalix[4]arene
cavity. Interestingly, one chlorine atom (Cl1) is located almost pre-
cisely above the centre of the phenolic unit (C9–C13, C27) with a
distance of 3.31 Å from the aromatic plain (Fig. 4). This short dis-
tance indicates the presence of Cl���p interactions, recently recogni-
sed as being important noncovalent interactions in various
biological15 and/or artificial16 systems.

In conclusion, we have shown that a spirodienone derivative of
thiacalix[4]arene possesses remarkably different reactivities com-
pared with common –CH2– analogues. The unexpected acid-in-
duced rearrangement of the spirodienone skeleton leads to a
phenoxanthiin derivative, a structural motif not formed from clas-
sical calixarenes.
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